

Features

- 1-port Resonator
- Provides reliable, fundamental mode, quartz frequency stabilization i.e. in transmitters or local oscillators
- In a low-profile metal **TO-39** case
- Lead-free production and RoHS compliance

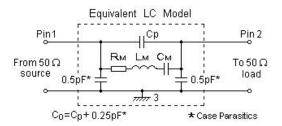
Package Dimensions

Pin	Configuration				
1	Input / Output				
2	Output / Input				
3	Case Ground				
Dimension	Data (unit: mm)				
Α	9.15±0.20				
В	5.08±0.20				
С	3.30±0.20				
D	3±0.20/5±0.20				
Е	0.45±0.10				

Marking

ND R315

Laser Printing


Top View:

"ND": Manufacturer's mark

"R": SAW resonator

"315": center Frequency

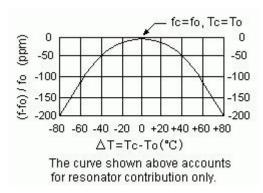
Equivalent LC Model

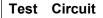
Maximum Ratings

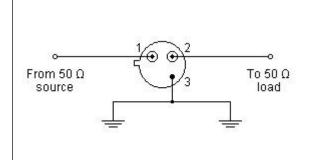
Rating	Value	Unit	
CW RF power dissipation	P	0	dBm
DC voltage between any terminals	$V_{ extsf{DC}}$	±30	V
Operating temperature range	T _A	-40 ~ +85	°C
Storage temperature range	\mathcal{T}_{stg}	-40 ~ +85	°C

Electrical Characteristics

	Characteristic	Sym	Minimum	Typical	Maximum	Unit
Center Frequency (+25℃)	Absolute Frequency	f _C	314.925		315.075	MHz
	Tolerance from 315.000 MHz	Δf_{C}			±75	kHz
Insertion Loss		IL		1.5	2.0	dB
Quality Factor	Unloaded Q	Qυ		12,500		
	50 Ω Loaded Q	Q_L		2,000		
Temperature Stability	Turnover Temperature	T ₀	25	39	55	°C
	Turnover Frequency	f ₀		f _C		kHz
	Frequency Temperature Coefficient	FTC		0.032		ppm/°C²
Frequency Aging Absolute Value during the First Year		f _A		≤10		ppm/yr
DC Insulation Resistance Between Any Two Pins			1.0			ΜΩ
RF Equivalent RLC Model	Motional Resistance	R_{M}		19	26	Ω
	Motional Inductance	L _M		120.3114		μН
	Motional Capacitance	См		2.1240		fF
	Pin 1 to Pin 2 Static Capacitance	C ₀	2.3	2.6	2.9	pF

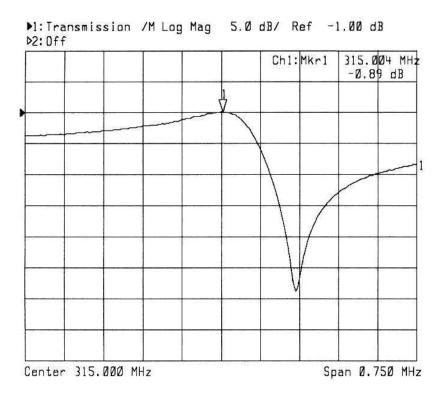

® RoHS Compliant


Electrostatic Sensitive Device

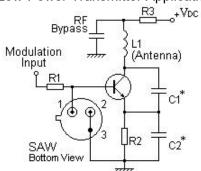

NOTE:

- Unless noted otherwise, case temperature T_C = +25°C±2°C.
- 2. The center frequency, f_C , is measured at the minimum insertion loss point with the resonator in the 50Ω test system.
- 3. Frequency aging is the change in f_C with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- 4. Turnover temperature, T_0 , is the temperature of maximum (or turnover) frequency, f_0 . The nominal frequency at any case temperature, T_0 , may be calculated from: $f = f_0 [1 FTC (T_0 T_0)^2]$.
- 5. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C₀ is the static capacitance between the two terminals measured at low frequency (10MHz) with a capacitance meter. The measurement includes case parasitic capacitance.

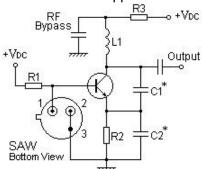
Temperature Characteristics



<u>http://www.shxindeli.cn</u> E-mail: <u>shxindeli@163.com</u> Tel: +86-21-61032315 Fax:+86-21-61032302



Typical Frequency Response



Typical Application Circuits

1) Low-Power Transmitter Application

2) Local Oscillator Application

© NEDI 2009. All Rights Reserved.

NOTE:

- 1. The specifications of this device are subject to change or obsolescence without notice.
- 2. Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- 3. Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.
- 4. For questions on technology, prices and delivery, please contact our sales offices or e-mail shxindeli@163.com

<u>http://www.shxindeli.cn</u> E-mail: <u>shxindeli@163.com</u> Tel: +86-21-61032315 Fax:+86-21-61032302